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Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning. Stochastic deep learning models
are becoming increasingly relevant. For example, they are commonly used in the fields of Variational Inference and
Reinforcement Learning. We can formalize stochastic models using so-called stochastic computation graphs. While
PyTorch computes gradients of deterministic computation graphs automatically, PyTorch will not automatically esti-
mate gradients on such stochastic graphs. This is because they require marginalization over the stochastic nodes in the
graph, which is usually intractable and needs to be estimated.

With Storchastic, you can easily define any stochastic deep learning model and let it estimate the gradients for you.
Storchastic provides a large range of gradient estimation methods that you can plug and play, to figure out which
one works best for your problem. Storchastic provides automatic broadcasting of sampled batch dimensions, which
increases code readability and allows implementing complex models with ease.

When dealing with continuous random variables and differentiable functions, the popular reparameterization method
is usually very effective. However, this method is not applicable when dealing with discrete random variables or non-
differentiable functions. This is why Storchastic has a focus on gradient estimators for discrete random variables,
non-differentiable functions and sequence models.

Mail e.van.krieken@vu.nl for any help or questions.

Storchastic requires Python 3.6+ and PyTorch 1.5+. Install using:

pip install storchastic

To install from source, use:

git clone https://github.com/HEmile/storchastic.git
cd storchastic
python setup.py install

CONTENTS: 1

mailto:e.van.krieken@vu.nl


Storchastic, Release 0.3.5

2 CONTENTS:



CHAPTER

ONE

INTRODUCTION TO STORCHASTIC

The following pages introduce the essential concepts and API calls to get started with Storchastic.

1.1 What is Storchastic?

On this page we introduce the ideas behind Storchastic before diving into the code, and explain what kinds of problems
it could be applied to. If you are already familiar with stochastic computation graphs [A12] and gradient estimation,
you can safely skip this page and start at Sampling, Inference and Variance Reduction.

1.1.1 Stochastic computation graphs

PyTorch relies on computation graphs for its automatic differentiation algorithm. These graphs keeps track of all
operations that happen while executing PyTorch code by recording the inputs and outputs to PyTorch functions. Each
node represents the output of some function. Consider the differentiable function

𝑓 = (𝑎+ 𝑏) · (𝑏+ 𝑐)2

This function can be represented using a (deterministic) computation graph as

By assigning to 𝑎, 𝑏, 𝑐 a concrete value, we can deterministically compute the value of 𝑓 . PyTorch then uses reverse-
mode differentiation on such graphs to find the derivatives with respect to the parameters.

However, in many applications we are interested in computation graphs with stochastic nodes. Stochastic nodes are
when we take a sample from a distribution, and use the resulting sample to compute the output. For example, suppose
that we sample 𝑒 from a normal distribution with mean c+b and standard deviation 1. We can represent this using a
stochastic computation graph:

3
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We use rectangles to denote deterministic computations and ellipses to denote stochastic computations. We can also
equivalently represent this using a generative story:

1. Compute 𝑑 = 𝑎+ 𝑏

2. Sample 𝑒 ∼ 𝒩 (𝑐+ 𝑏, 1)1

3. Compute 𝑓 = 𝑑 · 𝑒2

A generative story is a nice and easy to understand way to show how outputs are generated step-by-step. The goal
of Storchastic is to be able to write code that looks just like a generative story. Because of this, we will present both
stochastic computation graphs and their associated generative stories in these tutorials.

A very common question in stochastic computation graphs is: What is the expected value of 𝑓? Mathematically, this
is computed as:

E𝑒∼𝒩 (𝑐+𝑏,1)[(𝑎+ 𝑏) · 𝑒2] =
∫︁

𝑝(𝑒|𝑏, 𝑐) · (𝑎+ 𝑏) · 𝑒2 𝑑𝑒

This expression requires computing the integral over all values of 𝑒, which is generally intractable.2 A very common
method to approximate expectations is to use Monte Carlo methods: Take some (say 𝑆) samples of 𝑒 from the normal
distribution and average out the resulting values of 𝑓 :

E𝑒∼𝒩 (𝑐+𝑏,1)[(𝑎+ 𝑏) · 𝑒2] ≈ 1

𝑆

𝑆∑︁
𝑖=1

(𝑎+ 𝑏) · 𝑒2𝑖 , 𝑒1, ..., 𝑒𝑆 ∼ 𝒩 (𝑐+ 𝑏, 1) (1.1)

1.1.2 Gradient estimation

We have shown a simple model with a stochastic node, and we have shown how to compute samples of the output. Next,
assume we are interested in the derivative with respect to input 𝑐 𝜕

𝜕𝑐E𝑒∼𝒩 (𝑐+𝑏,1)[(𝑎+ 𝑏) · 𝑒2]. For the same reason as
before, we will use Monte Carlo estimation and sample some values from the distribution to estimate the derivatives.

There is however a big issue here: Sampling is not a differentiable procedure! An easy way to see this is by looking at
equation (1.1): 𝑐 does not appear in the Monte Carlo estimation. This means we cannot use reverse-mode differentiation
to compute the derivatives with respect to the inputs 𝑏, 𝑐. Luckily, we can use gradient estimation methods [A11].

1 𝒩 (𝜇, 𝜎) is a normal distribution with mean 𝜇 and standard deviation 𝜎.
2 For a simple expression like this, a closed-form analytical form can pretty easily be found. However, usually our models are much more complex

and non-linear.

4 Chapter 1. Introduction to Storchastic
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The pathwise derivative

A well known gradient estimation method is the pathwise derivative [A3] which is commonly referred to in Machine
Learning as reparameterization [A6]. We explain this estimation method by transforming the previous stochastic com-
putation graph to one that is equivalent:

Which has the following generative story:

1. Compute 𝑑 = 𝑎+ 𝑏

2. Sample 𝜖 ∼ 𝒩 (0, 1)

3. Compute 𝑒 = 𝑐+ 𝑏+ 𝜖

4. Compute 𝑓 = 𝑑 * 𝑒2.

The idea behind the pathwise derivative is to move the sampling procedure outside of the computation path, so that the
derivatives with respect to 𝑏, 𝑐 can now readily be computed using automatic differentiation! It works because it shifts
the mean of the 0-mean normal distribution by 𝑐+ 𝑏.

Unfortunately, this does not end our story, because the pathwise derivative has two heavy assumptions that limit its
applicability. The first is that a reparameterization must exist for the distribution to sample from. For the normal
distribution, this reparameterization is very simple, and a reparameterization has been derived for many other useful
continuous distributions. However, no (unbiased3 ) reparameterization exists for discrete distributions! Secondly, the
pathwise derivative requires there to be a differentiable path from the sampling step to the output. In many applications,
such as in Reinforcement Learning, this is not the case.

3 There is a very popular biased and low-variance reparameterization called the Gumbel-softmax-trick [A5][A10], though!

1.1. What is Storchastic? 5
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The score function

The pathwise derivative is a great choice if it is applicable because it is unbiased and usually has low variance. When
it is not applicable, we can turn to the score function, which is known in Reinforcement Learning as REINFORCE.
Rewrite 𝑓 as a function of 𝑒 using 𝑓(𝑒) = (𝑎+ 𝑏) · 𝑒2. Then

𝜕

𝜕𝑐
E𝑒∼𝒩 (𝑐+𝑏,1)[𝑓(𝑒)] =

𝜕

𝜕𝑐

∫︁
𝑝(𝑒|𝑏, 𝑐)𝑓(𝑒)𝑑𝑒

=

∫︁
𝜕

𝜕𝑐
𝑝(𝑒|𝑏, 𝑐)𝑝(𝑒|𝑏, 𝑐)

𝑝(𝑒|𝑏, 𝑐)
𝑓(𝑒)𝑑𝑒

=

∫︁
𝑝(𝑒|𝑏, 𝑐)𝑓(𝑒) 𝜕

𝜕𝑐
log 𝑝(𝑒|𝑏, 𝑐)𝑑𝑒

= E𝑒∼𝒩 (𝑐+𝑏,1)

[︂
𝑓(𝑒)

𝜕

𝜕𝑐
log 𝑝(𝑒|𝑏, 𝑐)

]︂
By introducing the log 𝑝(𝑒|𝑏, 𝑐) term in the expectation, Monte Carlo samples now depend on 𝑐 and so we can compute
a derivative with respect to 𝑐! Additionally, the score function can be used for any probability distribution and also
works for non-differentiable functions 𝑓 : It is universally applicable!

That sounds too good to be true, and unfortunately, it is. The score function is notorious for having very high variance.
The variance of an estimation method can be seen as the average difference between the samples. That means we will
need to look at many more samples to get a good idea of what gradient direction to follow.

Luckily, there is a significant amount of literature on variance-reduction methods, that aim to reduce the variance of the
score function. These greatly help to apply stochastic computation graphs in practice! Storchastic implements many of
these variance-reduction methods, to allow using stochastic computation graphs with non-differentiable functions and
discrete distributions.

1.1.3 Applications

Next, we show some common applications of gradient estimation to get an idea of what kind of problems Storchastic
can be useful for.

Reinforcement Learning

In Reinforcement Learning (RL), gradient estimation is a central research topic. The popular policy gradient algorithm
is the score function applied to the MDP model that is common in RL:

∇𝜃𝐽(𝜃) ∝ E𝑠∼𝑝𝜃(𝑠),𝑎∼𝑝𝜃(𝑎|𝑠)[𝑄𝜋(𝑠, 𝑎)∇𝜃 log 𝑝𝜃(𝑎|𝑠)]

Decreasing the variance of this estimator is a very active research area, as lower-variance estimators generally require
fewer samples to train the agent. This is often done using so-called “actor-critic” algorithms, that reduce the variance
of the policy gradient estimator using a critic which predicts how good an action is relative to other possible actions.
Other recent algorithms employ the pathwise derivative to make use of the gradient of the critic [A4][A9]. There is
active work on generalizing these ideas to stochastic computation graphs [A13].

6 Chapter 1. Introduction to Storchastic
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Variational Inference

Variational inference is a general method for Bayesian inference. It introduces an approximation to the posterior dis-
tribution, then minimizes the distance between this approximation and the actual posterior. In the deep learning era,
so-called ‘amortized inference’ is used, where the approximation is a neural network that predicts the parameters of
the approximate distribution. To train the parameters of this neural network, samples are taken from the approximate
posterior, and gradient estimation is used. For continuous posteriors, the pathwise derivative is usually employed [A6],
but for discrete posteriors, the choice of gradient estimator is an active area of research [A5].

Discrete Random Variables

Discrete random variables are challenging to deal with in practice, but have many promising applications. Deep learn-
ing usually acts in the continuous space and discrete random variables are a theoretically motivated way to do some
computation in the discrete world. This allows deep learning methods to make clear cut decisions, instead of a contin-
uous attention vector over all options which does not scale in practice.

For example, a variational autoencoder (VAE) with a discrete latent space could be useful to discern properties on the
data. Other applications include querying Wikipedia within a language model [A7], learning how to generate computer
programs [A1][A8] and hard attention layers [A2]. Additionally, sequence models such as neural machine translation
can be trained directly on BLEU scores using gradient estimation.

Footnotes

References

1.2 Sampling, Inference and Variance Reduction

Storchastic allows you to define stochastic computation graphs using an API that resembles generative stories. It is
designed with plug-and-play in mind: it is very easy to swap in different gradient estimation methods to compare their
performance on your task. In this tutorial, we apply gradient estimation to a simple and small problem.

1.2.1 Converting generative stories

We return to the generative story from Stochastic computation graphs:

1. Compute 𝑑 = 𝑎+ 𝑏

2. Sample 𝑒 ∼ 𝒩 (𝑐+ 𝑏, 1)

3. Compute 𝑓 = 𝑑 · 𝑒2

This story is easily converted using the following code:

1 import torch
2 import storch
3 from torch.distributions import Normal
4 from storch.method import Reparameterization, ScoreFunction
5

6 def compute_f(n):
7 a = torch.tensor(5.0, requires_grad=True)

(continues on next page)

1.2. Sampling, Inference and Variance Reduction 7
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(continued from previous page)

8 b = torch.tensor(-3.0, requires_grad=True)
9 c = torch.tensor(0.23, requires_grad=True)

10 d = a + b
11

12 # Sample e from a normal distribution using reparameterization
13 normal_distribution = Normal(b + c, 1)
14 method = Reparameterization("e", n_samples=n)
15 e = method(normal_distribution)
16

17 f = d * e * e
18 return f, c

Lines 10 and 17 represent the deterministic nodes. Lines 13-15 represent the stochastic node: We sample a
value from the normal distribution using reparameterization (or the pathwise derivative). The storch.method.
Reparameterization class is a subclass of storch.method.Method. Subclasses implement functionality for sam-
pling and gradient estimation, and you can subclass storch.method.Method to implement new methods gradient
estimation methods. Furthermore, storch.method.Method subclasses torch.nn.Module, which makes it easy for
them to become part of a PyTorch model.

storch.method.Reparameterization is initialized with the variable name “e”. This is done to initialize the plate
that corresponds to this sample. We will introduce plates later on. Furthermore, they have an optional n_samples option,
which controls how many samples are taken from the normal distribution. Note that the method is called directly on
the distribution (torch.distributions.Distribution) to sample from.

1.2.2 Gradient estimation

Great. Now how to get the derivative with respect to 𝑐? Storchastic requires you to register cost nodes using storch.
add_cost(). These are leave nodes that will be minimized. When all cost nodes are registered, storch.backward()
is used to estimate the gradients:

>>> f, c = compute_f(1)
>>> storch.add_cost(f, "f")
>>> storch.backward()
tensor(3.0209, grad_fn=<AddBackward0>)
>>> c.grad
tensor(-4.9160)

The second line registers the cost node with the name “f”, and the third line computes the gradients, where PyTorch’s
automatic differentiation is used for deterministic nodes, and Storchastic’s gradient estimation methods for stochastic
nodes. storch.backward() returns the estimated value of the sum of cost nodes, which in this case is just 𝑓 .

We also show the estimated gradient with respect to 𝑐 (-4.9160). Note that this gradient is stochastic! Running the code
another time, we get -12.2537.

8 Chapter 1. Introduction to Storchastic
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1.2.3 Computing gradient statistics

We can estimate the mean and variance of the gradient as follows:

19 n = 1
20 gradient_samples = []
21 for i in range(1000):
22 f, c = compute_f(n)
23 storch.add_cost(f, "f")
24 storch.backward()
25 gradient_samples.append(c.grad)
26 gradients = storch.gather_samples(gradient_samples, "gradients")

>>> storch.variance(gradients, "gradients")
Deterministic tensor(16.7321) Batch links: []
>>> print(storch.reduce_plates(gradients, "gradients"))
Deterministic tensor(-11.0195) Batch links: []

Alright, a few things to note. storch.gather_samples() is a function that takes a list of tensors that are (condition-
ally) independent samples of some value, in this case the gradients. Like most other methods in Storchastic, it returns
a storch.Tensor, in this case a storch.IndependentTensor:

>>> type(gradients)
<class 'storch.tensor.IndependentTensor'>

storch.Tensor is a special “tensor-like” object which wraps a torch.Tensor and includes extra metadata to help
with estimating gradients and keeping track of the plate dimensions. Plate dimensions are dimensions of the tensor of
which we know conditional independency properties. We can look at the plate dimensions of a storch.Tensor using

>>> gradients.plates
[('gradients', 1000, tensor(0.0010))]

The gradients tensor has one plate dimension with name “gradients” (as we defined using storch.
gather_samples()). As we simulated the gradient 1000 times, the size of the plate dimension is 1000. The third
value is the weight of the samples. In this case, samples are weighted identically (that is, the weight is 1/1000), which
corresponds to a normal monte carlo sample.

Note that we used the plate dimension name “gradients” in storch.variance(gradients, "gradients"). With
this we mean that we compute the variance over the gradient plate dimension, which represent the different independent
samples of gradient estimates.

1.2.4 Reducing variance

Next, let us try to reduce the variance. A simple way to do this is to use more samples of 𝑒. In line 14 (method =
Reparameterization("e", n_samples=n), we pass the amount of samples to use for this method. Let’s use 10 by
setting line 19 to n = 10, and compute the variance again:

>>> storch.variance(gradients, "gradients")
Deterministic tensor(1.6388) Batch links: []

By using 10 times as many samples, we reduced the variance by (about) a factor 10. Note that we did not have to change
any other code but changing the value of n. Storchastic is designed so that all (left-broadcastable!) code supports both
using a single or multiple samples. Using more samples is an easy way to reduce variance. Storchastic automatically

1.2. Sampling, Inference and Variance Reduction 9
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parallelizes the computation over the different samples, so that if your gpu has enough memory, there is (usually) almost
no overhead to using more samples, yet we can get better estimates of the gradient!

1.2.5 Using different estimators

Storchastic is designed to make swapping in different gradient estimation as easy as possible. For instance, say we want
to use the score function instead of reparameterization. This is done as follows:

6 def compute_f(n):
7 a = torch.tensor(5.0, requires_grad=True)
8 b = torch.tensor(-3.0, requires_grad=True)
9 c = torch.tensor(0.23, requires_grad=True)

10 d = a + b
11

12 # Sample e from a normal distribution using reparameterization
13 normal_distribution = Normal(b + c, 1)
14 method = ScoreFunction("e", n_samples=n, baseline_factory=None)
15 e = method(normal_distribution)
16

17 f = d * e * e
18 return f, c

Note how we only changed the line (method = Reparameterization("e", n_samples=n)) where we defined
the gradient estimation method to now create a storch.method.ScoreFunction instead of storch.method.
Reparameterization. Let’s see the variance of this method (using 1 sample):

>>> storch.variance(gradients, "gradients")
Deterministic tensor(748.1914) Batch links: []

Ouch, that really is much higher than using Reparameterization! While the score function is much more generally
applicable than reparameterization (as it can be used for discrete distributions and non-differentiable functions), it
clearly has a prohibitive large variance. Storchastic also has the storch.method.Infer gradient estimation method,
which automatically applies reparameterization if possible and otherwise uses the score function.

Can we do something about the large variance? Using more samples is always an option. To get the variance in the
same ballpark as a single-sample reparameterization, we would need to use about 748.2/16.7 samples, or about n=45!

>>> storch.variance(gradients, "gradients")
Deterministic tensor(17.0591) Batch links: []

Luckily, we can make efficient reuse of the multiple samples we take. Note how we set baseline_factory=None
when defining the storch.method.ScoreFunction. A baseline is a very common variance reduction method that
subtracts a value from the cost function to stabilize the gradient. A simple but effective one is the batch average
baseline (storch.method.baseline.BatchAverage) that subtracts the average of the other samples. Simply change
ScoreFunction("e", n_samples=n, baseline_factory="batch_average"). Let’s use 20 samples:

>>> storch.variance(gradients, "gradients")
Deterministic tensor(16.8761) Batch links: []

Sweet! We used fewer than halve of the samples, yet get a lower variance than before. For complicated settings where
reparameterization is not an option, strong variance reduction is unfortunately very important for efficient algorithms.

For full code of this example, go to Introduction Example.

10 Chapter 1. Introduction to Storchastic
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1.3 Discrete Gradient Estimation

Next, we are going to dive deeper into Storchastic’s API and discuss how to use gradient estimation to train a variational
auto-encoder with a discrete latent space on MNIST.

1.3.1 Discrete Variational Auto-Encoder

A variational auto-encoder (VAE) is a popular family of generative deep learning models that use variational inference
and gradient estimation [B3]. See [B1] for a thorough mathematical introduction. In this tutorial, we show how to train
this model when using a discrete latent space using Storchastic. Let’s first look at the stochastic computation graph of
VAEs:

The diamond nodes are deterministic nodes that represent cost functions (or “losses”). The corresponding generative
story is:

1. Sample a datapoint 𝑥 from the dataset.

2. Compute q = 𝐸𝜑(𝑥). This is the logits of the variational distribution encoded from 𝑥.

3. Sample z ∼ Cat(q) from categorical distribution with parameters q

4. Compute cost node ℓ𝐾𝐿(q). This is the KL-divergence of the prior with the variational posterior.

5. Compute �̂� = 𝐷𝜃(z). This decodes from z the reconstructed input �̂�.

6. Compute cost node ℓ𝑟𝑒𝑐(𝑥, �̂�). This is the ‘reconstruction’ loss.

Because of the sample of z ∼ Cat(q), we need to use gradient estimation. Otherwise, we cannot train the parameters
𝜑! Reparameterization is not an option, as we are dealing with discrete random variables. Let’s see how we can solve
this using Storchastic.

First, we define the encoder 𝐸𝜑 and decoder 𝐷𝜃 networks. For both the encoder and decoder we use 2 fully connected
hidden layers with 512 and 256 hidden units. For the latent space, we will use 2 conditionally independent categorical
distributions of 10 choices. This means there are 102 = 100 possible configurations to sum over.

1 import torch
2 import torch.nn as nn

(continues on next page)
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3 import storch
4 from torch.distributions import OneHotCategorical
5

6

7 class DiscreteVAE(nn.Module):
8 def __init__(self):
9 super().__init__()

10 self.fc1 = nn.Linear(784, 512)
11 self.fc2 = nn.Linear(512, 256)
12 self.fc3 = nn.Linear(256, 2 * 10)
13 self.fc4 = nn.Linear(2 * 10, 256)
14 self.fc5 = nn.Linear(256, 512)
15 self.fc6 = nn.Linear(512, 784)
16

17 def encode(self, x):
18 h1 = self.fc1(x).relu()
19 h2 = self.fc2(h1).relu()
20 return self.fc3(h2)
21

22 def decode(self, z):
23 h3 = self.fc4(z).relu()
24 h4 = self.fc5(h3).relu()
25 return self.fc6(h4).sigmoid()

In DiscreteVAE.__init__(), we pass the storch.method.Method that we will use to estimate gradients with
respect to q.

Time to translate our generative story!

28 def generative_story(method: storch.method.Method, model: DiscreteVAE, data: torch.
→˓Tensor):

29 x = storch.denote_independent(data.view(-1, 784), 0, "data")

data is a tensor containing a minibatch of MNIST images of shape (minibatch,28,28). As we mentioned in our genera-
tive story, we sample a datapoint 𝑥 from the dataset. We thus have to tell Storchastic that the first minibatch dimension
is an independent* dimension! We give this dimension the plate name “data”.

30 # Encode data. Shape: (data, 2 * 10)
31 q_logits = model.encode(x)
32 # Shape: (data, 2, 10)
33 q_logits = q_logits.reshape(-1, 2, 10)
34 # Define variational posterior
35 q = OneHotCategorical(probs=q_logits.softmax(dim=-1))
36 # Sample from variational posterior. Shape: (amt_samples, data, 2, 10)
37 z = method(q)

Here, we define a one-hot categorical distribution based on the logits from the encoder. Using the passed storch.
method.Method, we sample from this distribution to get z. We have to reshape the logits and sample to properly
denote that we want 2 conditionally independent categorical latent variables with 10 choices, instead of 1 categorical
latent variable with 20 choices.

The KL-divergence loss ℓ𝐾𝐿(q) can be computed using

12 Chapter 1. Introduction to Storchastic
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37 prior = OneHotCategorical(probs=torch.ones_like(q.probs) / 10.0)
38 # Shape: (data)
39 KL_div = torch.distributions.kl_divergence(q, prior).sum(-1)
40 storch.add_cost(KL_div, "kl-div")

We define an uniform prior over the categorical random variables, and then use torch.distributions.
kl_divergence() to analytically compute the KL-divergence between this prior and the variational posterior we
found. We want to minimize this KL-divergence, so we use storch.add_cost() to register this node.

Next, we reconstruct �̂� from 𝑧, and compute the reconstruction loss:

41 z_in = z.reshape(z.shape[:-2] + (2 * 10,))
42 # Shape: (amt_samples, data, 784)
43 reconstruction = model.decode(z_in)
44 bce = torch.nn.BCELoss(reduction="none")(reconstruction, x).sum(-1)
45 storch.add_cost(bce, "reconstruction")
46

47 return z

Here we use our model to decode 𝑧, then compute the binary cross entropy between the reconstruction and the original
datapoint. The computation of the binary cross entropy is a bit subtle. We first pass “none” to reduction to denote
that we do not want to sum over the result, yet then we still sum over the last dimension afterwards. Why not:

>>> torch.nn.BCELoss(reduction="sum")(reconstruction, x)
ValueError: Got an input tensor with too few dimensions. We expected 2 plate dimensions.␣
→˓Instead, we found only 0 dimensions. Violated at dimension 0

This error means that we have removed a plate dimension. Setting :python:`reduction=”sum” makes the loss function
return only a single number. In Storchastic, it is not allowed to remove dimensions that are denoted as independent
unless the user explicitly asks Storchastic to do so. We can also, for example, not do the following:

>>> torch.mean(bce)
ValueError: Got an input tensor with too few dimensions. We expected 2 plate dimensions.␣
→˓Instead, we found only 0 dimensions. Violated at dimension 0

Why would it not be allowed here, as we are just computing our loss function? We would average over our samples
anyways? Storchastic is no longer able to compute gradient estimates after one would take the mean. For example, if
we use the score function and we take multiple samples, we would need to multiply the log probability of the samples
with the corresponding computed loss. This happens during inference in storch.backward(). If we would have
taken the mean, we could no longer recover the individual loss outputs!

To make life easier, Storchastic is designed with “fail-quick” in mind. Therefore, if code is written that is likely to result
in such errors, it will crash!

Next, we load the MNIST dataset1:

46 from torchvision import datasets, transforms
47

48 train_loader = torch.utils.data.DataLoader(
49 datasets.MNIST(
50 "./data", train=True, download=True, transform=transforms.ToTensor(),
51 ),
52 batch_size=64,

(continues on next page)

1 Note that it is best practice to use the binarized MNIST dataset as proposed by http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf.
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53 shuffle=True,
54 )

Finally, we put everything together in the training loop and add a training evaluation that also computes gradient vari-
ance:

53 def train(method: storch.method.Method, train_loader):
54 model = DiscreteVAE()
55 optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
56 for epoch in range(5):
57 print("Epoch:" + str(epoch + 1))
58 for i, (data, _) in enumerate(train_loader):
59 optimizer.zero_grad()
60

61 generative_story(method, model, data)
62 storch.backward()
63 optimizer.step()
64 if i % 300 == 0:
65 evaluate(method, model, data, optimizer)
66

67

68 def evaluate(method: storch.method.Method, model: DiscreteVAE, data, optimizer):
69 gradients = []
70 for i in range(100):
71 optimizer.zero_grad()
72

73 z = generative_story(method, model, data)
74 elbo = storch.backward()
75 gradients.append(z.param_grads["probs"])
76 gradients = storch.gather_samples(gradients, "gradients")
77

78 print(
79 "Training ELBO "
80 + str(elbo.item())
81 + ". Gradient variance "
82 + str(storch.variance(gradients, "gradients")._tensor.item())
83 )

We use an optimizer as normal, however, we call storch.backward() to compute the gradients. To get the gradient
for the gradient variance computation, we use storch.StochasticTensor.param_grads. In this example, we will
do 5 training epochs.

1.3.2 Experimenting with the Discrete VAE

Let us naively try with the score function, no baseline and a single sample:

>>> train(storch.method.ScoreFunction("z", n_samples=1, baseline_factory="None"))
Epoch:1
Training ELBO 543.1165771484375. Gradient variance 12860.05078125
Training ELBO 192.7163848876953. Gradient variance 1841.5672607421875
Training ELBO 196.0297088623047. Gradient variance 146922.4375

(continues on next page)
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Training ELBO 203.4992218017578. Gradient variance 277160.9375
Epoch:2
Training ELBO 191.17823791503906. Gradient variance 28171.1796875
Training ELBO 193.627685546875. Gradient variance 130113.6953125
Training ELBO 200.20506286621094. Gradient variance 210252.90625
Training ELBO 197.44796752929688. Gradient variance 523125.375
Epoch:3
Training ELBO 202.95068359375. Gradient variance 39035.52734375
Training ELBO 195.01597595214844. Gradient variance 104070.5078125
Training ELBO 198.34580993652344. Gradient variance 7388.16845703125
Training ELBO 192.8509979248047. Gradient variance 457.5860595703125
Epoch:4
Training ELBO 184.8743896484375. Gradient variance 1029.0767822265625
Training ELBO 201.11277770996094. Gradient variance 168409.390625
Training ELBO 199.73178100585938. Gradient variance 13173.759765625
Training ELBO 198.03358459472656. Gradient variance 4439.3017578125
Epoch:5
Training ELBO 194.9002685546875. Gradient variance 18869.560546875
Training ELBO 188.87930297851562. Gradient variance 45681.5546875
Training ELBO 209.60585021972656. Gradient variance 5402.30615234375
Training ELBO 190.37799072265625. Gradient variance 34421.51953125

It clearly is training, but the training ELBO seems rather unstable. Let’s again use the batch average baseline and 10
samples:

>>> train(storch.method.ScoreFunction("z", n_samples=10, baseline_factory="batch_average
→˓"), train_loader)
Epoch:1
Training ELBO 543.8447265625. Gradient variance 0.00031363777816295624
Training ELBO 195.42037963867188. Gradient variance 4.808237075805664
Training ELBO 176.24708557128906. Gradient variance 20.694387435913086
Training ELBO 175.12139892578125. Gradient variance 114.5234375
Epoch:2
Training ELBO 161.55543518066406. Gradient variance 117.06814575195312
Training ELBO 163.81021118164062. Gradient variance 764.1204223632812
Training ELBO 167.0965576171875. Gradient variance 0.7521735429763794
Training ELBO 163.2193145751953. Gradient variance 1854.9320068359375
Epoch:3
Training ELBO 165.54237365722656. Gradient variance 34.32332229614258
Training ELBO 159.99176025390625. Gradient variance 121.91394805908203
Training ELBO 149.61558532714844. Gradient variance 4.967251777648926
Training ELBO 165.6819305419922. Gradient variance 2.564244270324707
Epoch:4
Training ELBO 156.40789794921875. Gradient variance 215.02999877929688
Training ELBO 152.97520446777344. Gradient variance 258.04400634765625
Training ELBO 157.0828094482422. Gradient variance 13.990401268005371
Training ELBO 157.7599639892578. Gradient variance 1.4151099920272827
Epoch:5
Training ELBO 164.08978271484375. Gradient variance 391.89794921875
Training ELBO 156.1527862548828. Gradient variance 2.9808785915374756
Training ELBO 154.16932678222656. Gradient variance 10.244932174682617
Training ELBO 151.02488708496094. Gradient variance 4701.791015625

1.3. Discrete Gradient Estimation 15



Storchastic, Release 0.3.5

Much better! Our variance reduction techniques help reduce the gradient variance by several factors, which results in
far lower training ELBO scores.

Another popular technique is the Gumbel-softmax-trick [B2][B4]. This trick uses a continuous that approximates the
One Hot Categorical distribution. This distribution allows reparameterization. Because the decoder of the Discrete
VAE does not require its inputs to be discrete, we can apply this trick here!

The Gumbel-softmax trick is a biased gradient estimation tool. This means that it is not an estimate of the correct
gradient. Using storch.method.Expect, we can estimate just how biased it is. Let’s edit our evaluation function:

def evaluate(method: storch.method.Method, model: DiscreteVAE, data, optimizer):
# Compute expected gradient
optimizer.zero_grad()

z = generative_story(storch.method.Expect("z"), model, data)
storch.backward()
expected_gradient = z.param_grads["probs"]

# Collect gradient samples
gradients = []
for i in range(100):

optimizer.zero_grad()

z = generative_story(method, model, data)
elbo = storch.backward()
gradients.append(z.param_grads["probs"])

gradients = storch.gather_samples(gradients, "gradients")
mean_gradient = storch.reduce_plates(gradients, "gradients")
bias_gradient = (

storch.reduce_plates((mean_gradient - expected_gradient) ** 2)
).sum()
print(

"Training ELBO "
+ str(elbo.item())
+ " Gradient variance "
+ str(storch.variance(gradients, "gradients")._tensor.item())
+ " Gradient bias "
+ str(bias_gradient._tensor.item())

)

storch.method.Expect is not a gradient estimation method, but computes the gradient analytically by summing over
all options. Because we have a small latent space of 102 = 100 options, this is viable.

>>> train(storch.method.GumbelSoftmax("z", n_samples=1), train_loader)
Epoch:1
Training ELBO 543.6360473632812 Gradient variance 0.00038375251460820436 Gradient bias 2.
→˓135414251824841e-05
Training ELBO 204.85665893554688 Gradient variance 5.555451931815725e-15 Gradient bias 5.
→˓555451931815725e-15
Training ELBO 205.2622528076172 Gradient variance 5.326468432986786e-15 Gradient bias 5.
→˓326468432986786e-15
Training ELBO 212.6741485595703 Gradient variance 0.001139726140536368 Gradient bias 0.
→˓5215573906898499
Epoch:2

(continues on next page)
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Training ELBO 213.31932067871094 Gradient variance 6.1461252753858275e-15 Gradient bias␣
→˓6.1461252753858275e-15
Training ELBO 202.0615234375 Gradient variance 5.118301615869569e-15 Gradient bias 5.
→˓118301615869569e-15
Training ELBO 211.42044067382812 Gradient variance 0.0004477511683944613 Gradient bias 1.
→˓2102100849151611
Training ELBO 215.71697998046875 Gradient variance 2.4727771913424235e-12 Gradient bias␣
→˓0.6834085583686829
Epoch:3
Training ELBO 221.59030151367188 Gradient variance 1.2252018451690674 Gradient bias 15.
→˓654888153076172
Training ELBO 211.0780487060547 Gradient variance 2.080887545607979e-14 Gradient bias 2.
→˓080887545607979e-14
Training ELBO 219.01422119140625 Gradient variance 2.0171364578658313e-14 Gradient bias␣
→˓2.0171364578658313e-14
Training ELBO 210.15830993652344 Gradient variance 2.049922731561793e-14 Gradient bias 2.
→˓049922731561793e-14
Epoch:4
Training ELBO 219.97352600097656 Gradient variance 2.148281552649678e-14 Gradient bias 2.
→˓148281552649678e-14
Training ELBO 215.22779846191406 Gradient variance 2.0663158684097738e-14 Gradient bias␣
→˓2.0663158684097738e-14
Training ELBO 208.27081298828125 Gradient variance 2.0371725140133634e-14 Gradient bias␣
→˓2.0371725140133634e-14
Training ELBO 213.13644409179688 Gradient variance 2.049922731561793e-14 Gradient bias 2.
→˓049922731561793e-14
Epoch:5
Training ELBO 202.03463745117188 Gradient variance 1.931527854326376e-14 Gradient bias 1.
→˓931527854326376e-14
Training ELBO 209.62664794921875 Gradient variance 2.0262437561147095e-14 Gradient bias␣
→˓2.0262437561147095e-14
Training ELBO 212.3344268798828 Gradient variance 1.951563910473908e-14 Gradient bias 1.
→˓951563910473908e-14
Training ELBO 209.84085083007812 Gradient variance 1.993457482418748e-14 Gradient bias 1.
→˓993457482418748e-14

Oof, that is not great! The gumbel softmax does even worse than the score function without variance reduction.
Theoretically, using stochastic optimization with gradient estimation only for unbiased gradient estimation methods.
We should note that the gumbel-softmax performs much better for larger latent spaces, for example when using 20
categorical latent variables of 10 options.

We could also just use storch.method.Expect to train the model:

Epoch:1
Training ELBO 543.6659545898438
Training ELBO 175.1640625
Training ELBO 163.3818359375
Training ELBO 158.3362274169922
Epoch:2
Training ELBO 159.03167724609375
Training ELBO 158.54054260253906
Training ELBO 151.9814453125
Training ELBO 162.34519958496094

(continues on next page)
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Epoch:3
Training ELBO 154.2731475830078
Training ELBO 159.92709350585938
Training ELBO 157.92642211914062
Training ELBO 147.97755432128906
Epoch:4
Training ELBO 151.23654174804688
Training ELBO 155.57571411132812
Training ELBO 142.53665161132812
Training ELBO 141.1732635498047
Epoch:5
Training ELBO 152.55979919433594
Training ELBO 154.68777465820312
Training ELBO 151.78952026367188
Training ELBO 156.02206420898438

Footnotes

References
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CHAPTER

THREE

FAQ

3.1 A method I’m using doesn’t play well with the required indepen-
dent dimensions in Storchastic

An example of this is torch.nn.Conv2d(), which expects exactly an input of (N, C, H, W) and cannot have any more
independent dimensions to the left of N. However, when sampling using Storchastic, we use the dimensions on the left
to keep track of independent samples from different proposal distributions, meaning we might have an input of size (Z,
N, C, H, W), which will not fit torch.nn.Conv2d(). Can we fix this? Yes!

The function storch.wrappers.make_left_broadcastable() helps us out there. It makes sure to flatten all in-
dependent dimensions into a single dimension before calling the function, and after calling the function it will restore
them. You can call it using make_left_broadcastable(Conv2d(16, 33, 3)).

21



Storchastic, Release 0.3.5

22 Chapter 3. FAQ



CHAPTER

FOUR

NEED HELP?

Send a mail to e.van.krieken@vu.nl or add an issue to https://github.com/HEmile/storchastic.

23
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CHAPTER

FIVE

EXAMPLES

Lists several examples of Storchastic to help you get started. Also check out https://github.com/HEmile/storchastic/
tree/master/examples.

5.1 Introduction Example

import torch
from torch.distributions import Normal
from storch.method import Reparameterization, ScoreFunction
import storch

torch.manual_seed(0)

def compute_f(method):
a = torch.tensor(5.0, requires_grad=True)
b = torch.tensor(-3.0, requires_grad=True)
c = torch.tensor(0.23, requires_grad=True)
d = a + b

# Sample e from a normal distribution using reparameterization
normal_distribution = Normal(b + c, 1)
e = method(normal_distribution)

f = d * e * e
return f, c

# e*e follows a noncentral chi-squared distribution https://en.wikipedia.org/
→˓wiki/Noncentral_chi-squared_distribution
# exp_f = d * (1 + mu * mu)
repar = Reparameterization("e", n_samples=1)
f, c = compute_f(repar)
storch.add_cost(f, "f")
print(storch.backward())

print("first derivative estimate", c.grad)

f, c = compute_f(repar)
(continues on next page)
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storch.add_cost(f, "f")
print(storch.backward())

print("second derivative estimate", c.grad)

def estimate_variance(method):
gradient_samples = []
for i in range(1000):

f, c = compute_f(method)
storch.add_cost(f, "f")
storch.backward()
gradient_samples.append(c.grad)

gradients = storch.gather_samples(gradient_samples, "gradients")
# print(gradients)
print("variance", storch.variance(gradients, "gradients"))
print("mean", storch.reduce_plates(gradients, "gradients"))
print("st dev", torch.sqrt(storch.variance(gradients, "gradients")))

print(type(gradients))
print(gradients.shape)
print(gradients.plates)

print("Reparameterization n=1")
estimate_variance(Reparameterization("e", n_samples=1))

print("Reparameterization n=10")
estimate_variance(Reparameterization("e", n_samples=10))

print("Score function n=1")
estimate_variance(ScoreFunction("e", n_samples=1))

print("Score function n=45")
estimate_variance(ScoreFunction("e", n_samples=45))

print("Score function with baseline n=20")
estimate_variance(ScoreFunction("e", n_samples=20, baseline_factory="batch_
→˓average"))

5.2 Discrete Variational Autoencoder

import torch
import torch.nn as nn
import storch
from storch.method import ScoreFunction

class DiscreteVAE(nn.Module):
def __init__(self):

self.method = ScoreFunction("z", 8, baseline_factory="batch_average")
(continues on next page)
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self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 20 * 10)
self.fc4 = nn.Linear(20 * 10, 256)
self.fc5 = nn.Linear(256, 512)
self.fc6 = nn.Linear(512, 784)

def encode(self, x):
h1 = self.fc1(x).relu()
h2 = self.fc2(h1).relu()
return self.fc3(h2).reshape(logits.shape[:-1] + (20, 10))

def decode(self, z):
z = z.reshape(z.shape[:-2] + (20 * 10,))
h3 = self.fc4(z).relu()
h4 = self.fc5(h3).relu()
return self.fc6(h4).sigmoid()

def KLD(self, q):
p = torch.distributions.OneHotCategorical(probs=torch.ones_like(q.

→˓logits) / (1.0 / 10.0))
return torch.distributions.kl_divergence(p, q).sum(-1)

def forward(self, x):
q = torch.distributions.OneHotCategorical(logits=self.encode(x))
KLD = self.KLD(q)
z = self.method("z", q, n=8)
return self.decode(z), KLD

model = DiscreteVAE()
for data in minibatches():

optimizer.zero_grad()
# Denote the minibatch dimension as being independent
data = storch.denote_independent(data.view(-1, 784), 0, "data")

# Compute the output of the model
recon_batch, KLD = model(data)

# Register the two cost functions
storch.add_cost(KLD)
storch.add_cost(storch.nn.b_binary_cross_entropy(recon_batch, data,␣

→˓reduction="sum"))

# Go backward through both deterministic and stochastic nodes
average_ELBO, _ = storch.backward()
print(average_ELBO)

optimizer.step()

import torch
import storch
from vae import minibatches, encode, decode, KLD

(continues on next page)
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method = storch.method.ScoreFunction("z", 8, baseline_factory="batch_average")
for data in minibatches():

optimizer.zero_grad()
# Denote the minibatch dimension as being independent
data = storch.denote_independent(data.view(-1, 784), 0, "data")

# Define the variational distribution given the data, and sample latent␣
→˓variables

q = torch.distributions.OneHotCategorical(logits=encode(data))
z = method(q)

# Compute and register the KL divergence and reconstruction losses to form␣
→˓the ELBO

reconstruction = decode(z)
storch.add_cost(KLD(q))
storch.add_cost(storch.nn.b_binary_cross_entropy(reconstruction, data,␣

→˓reduction="sum"))

# Go backward through both deterministic and stochastic nodes, and optimize
average_ELBO, _ = storch.backward()
optimizer.step()

import torch
import storch
from vae import minibatches, encode, decode, KLD

method = ScoreFunctionLOO("z", 8)
for data in minibatches():

optimizer.zero_grad()
# Denote the minibatch dimension as being independent
data = storch.denote_independent(data.view(-1, 784), 0, "data")

# Define variational distribution given data, and sample latent variables
q = torch.distributions.OneHotCategorical(logits=encode(data))
z = method(q)

# Compute and register the KL divergence and reconstruction losses to form␣
→˓the ELBO

reconstruction = decode(z)
storch.add_cost(KLD(q))
storch.add_cost(storch.nn.b_binary_cross_entropy(reconstruction, data))

# Backward pass through deterministic and stochastic nodes, and optimize
ELBO = storch.backward()
optimizer.step()

class ScoreFunctionLOO(Method):
def proposal_dist(self, distr: Distribution, amt_samples: int, ) -> torch.Tensor:

return distr.sample((amt_samples,))
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def weighting_function(self, distr: Distribution, amt_samples: int, ) -> torch.Tensor:

return torch.full(amt_samples, 1/amt_samples)

def estimator(self, tensor: StochasticTensor, cost: CostTensor ) -> Tuple[Optional[storch.Tensor],
Optional[storch.Tensor]]:

# Compute gradient function (log-probability) log_prob = ten-
sor.distribution.log_prob(tensor) sum_costs = storch.sum(costs.detach(), tensor.name) #
Compute control variate baseline = (sum_costs - costs) / (tensor.n - 1) return log_prob,
(1.0 - magic_box(log_prob)) * baseline
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CHAPTER

SIX

STORCH TENSORS

To keep track of the stochastic computation graph, Storchastic returns wrapped torch.Tensor that are subclasses of
storch.Tensor. This wrapper contains information that allows Storchastic to analyse the computation graph during
inference to properly estimate gradients. Furthermore, storch.Tensor contains plate information that allows for
automatic broadcasting with other storch.Tensor objects with different plate information.

class storch.tensor.IndependentTensor(tensor: torch.Tensor, parents: [Tensor], plates: [Plate],
tensor_name: str, plate_name: str, weight:
Optional[storch.Tensor])

Bases: Tensor

Used to denote independencies on a Tensor. This could for example be the minibatch dimension. The first
dimension of the input tensor is taken to be independent and added as a batch dimension to the storch system.

stochastic()→ bool

Returns
True if this is a stochastic node in the stochastic computation graph, False otherwise.

Return type
bool
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CHAPTER

SEVEN

PLATES
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CHAPTER

EIGHT

GRADIENT ESTIMATION METHODS

8.1 Baselines

class storch.method.baseline.Baseline

Bases: ABC, Module

abstract compute_baseline(tensor: StochasticTensor, cost_node: CostTensor)→ Tensor

training: bool

class storch.method.baseline.BatchAverageBaseline

Bases: Baseline

Uses the average over the other samples as baseline. Introduced by https://arxiv.org/abs/1602.06725

compute_baseline(tensor: StochasticTensor, costs: CostTensor)→ Tensor

training: bool

class storch.method.baseline.MovingAverageBaseline(exponential_decay=0.95)
Bases: Baseline

Takes the (unconditional) average over the different costs.

compute_baseline(tensor: StochasticTensor, cost_node: CostTensor)→ Tensor

training: bool

8.2 Multi-sample estimators

8.3 RELAX

8.4 Unordered set estimator
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CHAPTER

NINE

SAMPLING METHODS

class storch.sampling.method.MonteCarlo(plate_name: str, n_samples: int = 1)
Bases: SamplingMethod

Monte Carlo sampling methods use simple sampling methods that take n independent samples. Unlike complex
ancestral sampling methods such as SampleWithoutReplacementMethod, the sampling behaviour is not depen-
dent on earlier samples in the stochastic computation graph (but the distributions are!).

sample(distr: Distribution, parents: [storch.Tensor], plates: [Plate], requires_grad: bool)

training: bool

class storch.sampling.method.SamplingMethod(plate_name: str)
Bases: ABC, Module

forward(distr: Distribution, parents: [storch.Tensor], plates: [Plate], requires_grad: bool)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks while
the latter silently ignores them.

mc_sample(distr: Distribution, parents: [storch.Tensor], plates: [Plate], amt_samples: int)→ torch.Tensor

mc_weighting_function(tensor: StochasticTensor, plate: Plate)→ Optional[Tensor]

on_plate_already_present(plate: Plate)

reset()→ None

abstract sample(distr: Distribution, parents: [storch.Tensor], plates: [Plate], requires_grad: bool)

set_mc_sample(new_sample_func: Callable[[Distribution, [storch.Tensor], [Plate], int], torch.Tensor])→
SamplingMethod

Override storch.Method specific sampling functions. This is called when initializing a storch.Method that
has slightly different MC sampling semantics (for example, reparameterization instead of normal sampling).
This allows for compatibility of different storch.Method’s with different storch.sampling.Method’s.

set_mc_weighting_function(new_weighting_func: Callable[[StochasticTensor, Plate],
Optional[Tensor]])→ SamplingMethod

Override storch.Method specific weighting functions. This is called when initializing a storch.Method that
has slightly different MC weighting semantics (for example, REBAR that weights some samples differ-
ently). This allows for compatibility of different storch.Method’s with different storch.sampling.Method’s.
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training: bool

update_parameters(result_triples: [storch.StochasticTensor, storch.CostTensor, torch.Tensor])

weighting_function(tensor: StochasticTensor, plate: Plate)→ Optional[Tensor]
Weight by the size of the sample. Overload this if your sampling method uses some kind of weighting of the
different events, like importance sampling or computing the expectation. If None is returned, it is assumed
the samples are iid monte carlo samples.

This method is called from storch.method.Method.sample, and it is not needed to manually call this on
created plates

9.1 Expectation

class storch.sampling.expect.Enumerate(plate_name: str, budget=10000)
Bases: SamplingMethod

sample(distr: ~torch.distributions.distribution.Distribution, parents: [<class 'storch.tensor.Tensor'>], plates:
[<class 'storch.tensor.Plate'>], requires_grad: bool) -> (<class 'storch.tensor.StochasticTensor'>,
<class 'storch.tensor.Plate'>)

training: bool

weighting_function(tensor: StochasticTensor, plate: Plate)→ Optional[Tensor]
Weight by the size of the sample. Overload this if your sampling method uses some kind of weighting of the
different events, like importance sampling or computing the expectation. If None is returned, it is assumed
the samples are iid monte carlo samples.

This method is called from storch.method.Method.sample, and it is not needed to manually call this on
created plates

9.2 Sequence decoding

class storch.sampling.seq.AncestralPlate(name: str, n: int, parents: List[Plate], variable_index: int,
parent_plate: AncestralPlate, selected_samples:
Optional[Tensor], log_probs: Optional[Tensor], weight:
Optional[Tensor] = None)

Bases: Plate

index_in(plates: List[Plate])→ int

is_in(plates: Iterable[Plate])→ bool

on_collecting_args(plates: [storch.Plate])→ bool
Filter the collected plates to only keep the AncestralPlates (with the same name) that has the highest variable
index. :param plates: :return:

on_duplicate_plate(plate: Plate)→ bool
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on_unwrap_tensor(tensor: Tensor)→ Tensor
Gets called whenever the given tensor is being unwrapped and unsqueezed for batch use. This method
should not be called on tensors whose variable index is higher than this plates.

selected_samples is used to choose from the parent plates what is the previous element in the sequence. This
is for example used in sampling without replacement. If set to None, it is assumed the different sequences
are indexed by the plate dimension.

Parameters
tensor – The input tensor that is being unwrapped

Returns
The tensor that will be unwrapped and unsqueezed in the future. Can be a modification of the
input tensor.

class storch.sampling.seq.IterDecoding(plate_name, k, eos)
Bases: SequenceDecoding

decode(distr: Distribution, joint_log_probs: Optional[storch.Tensor], parents: [storch.Tensor],
orig_distr_plates: [storch.Plate])

Decode given the input arguments :param distribution: The distribution to decode :param joint_log_probs:
The log probabilities of the samples so far. prev_plates x amt_samples :param parents: List of parents
of this tensor :param orig_distr_plates: List of plates from the distribution. Can include the self plate k.
:return: 3-tuple of storch.Tensor. 1: The sampled value. 2: The new joint log probabilities of the samples.
3: How the samples index the parent samples. Can just be None if there is no choosing happening.

abstract decode_step(indices: Tuple[int], yv_log_probs: storch.Tensor, joint_log_probs:
Optional[storch.Tensor], sampled_support_indices: Optional[storch.Tensor],
parent_indexing: Optional[storch.Tensor], is_conditional_sample: bool,
amt_plates: int, amt_samples: int)

Decode given the input arguments for a specific event :param indices: Tuple of integers indexing the
current event to sample. :param yv_log_probs: Log probabilities of the different options for this event.
distr_plates x k? x |D_yv| :param joint_log_probs: The log probabilities of the samples so far. None if
not is_conditional_sample. prev_plates x amt_samples :param sampled_support_indices: Tensor of sam-
ples so far. None if this is the first set of indices. plates x k x events :param parent_indexing: Tensor
indexing the parent sample. None if not is_conditional_sample. :param is_conditional_sample: True if a
parent has already been sampled. This means the plates are more complex! :param amt_plates: The total
amount of plates in both the distribution and the previously sampled variables :param amt_samples: The
amount of active samples. :return: 3-tuple of storch.Tensor. 1: sampled_support_indices, with :, indices
referring to the indices for the support. 2: The updated joint_log_probs of the samples. 3: The updated
parent_indexing. How the samples index the parent samples. Can just return parent_indexing if nothing
happens. 4: The amount of active samples after this step.

training: bool

class storch.sampling.seq.MCDecoder(plate_name: str, k: int, eos: None)
Bases: SequenceDecoding

decode(distribution: Distribution, joint_log_probs: Optional[storch.Tensor], parents: [storch.Tensor],
orig_distr_plates: [storch.Plate])

Decode given the input arguments :param distribution: The distribution to decode :param joint_log_probs:
The log probabilities of the samples so far. prev_plates x amt_samples :param parents: List of parents
of this tensor :param orig_distr_plates: List of plates from the distribution. Can include the self plate k.
:return: 3-tuple of storch.Tensor. 1: The sampled value. 2: The new joint log probabilities of the samples.
3: How the samples index the parent samples. Can just be a range if there is no choosing happening. For
all of these, the last plate index should be the plate index, with the other plates like all_plates
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training: bool

class storch.sampling.seq.SequenceDecoding(plate_name: str, k: int, eos: None)
Bases: SamplingMethod

Methods for generating sequences of discrete random variables. Examples: Simple ancestral sampling with
replacement, beam search, Stochastic beam search (sampling without replacement)

EPS = 1e-08

all_finished()→ bool

create_plate(plate_size: int, plates: [storch.Plate])→ AncestralPlate

abstract decode(distribution: Distribution, joint_log_probs: Optional[storch.Tensor], parents:
[storch.Tensor], orig_distr_plates: [storch.Plate])

Decode given the input arguments :param distribution: The distribution to decode :param joint_log_probs:
The log probabilities of the samples so far. prev_plates x amt_samples :param parents: List of parents
of this tensor :param orig_distr_plates: List of plates from the distribution. Can include the self plate k.
:return: 3-tuple of storch.Tensor. 1: The sampled value. 2: The new joint log probabilities of the samples.
3: How the samples index the parent samples. Can just be a range if there is no choosing happening. For
all of these, the last plate index should be the plate index, with the other plates like all_plates

get_amt_finished()→ Union[Tensor, Tensor]

get_sampled_seq(finished: bool = False)→ [storch.StochasticTensor]

get_unique_seqs()

reset()

sample(distr: Distribution, parents: [storch.Tensor], orig_distr_plates: [storch.Plate], requires_grad: bool)
Sample from the distribution given the sequence so far. :param distribution: The distribution to sample
from :return:

training: bool

weighting_function(tensor: StochasticTensor, plate: Plate)→ Optional[Tensor]
Weight by the size of the sample. Overload this if your sampling method uses some kind of weighting of the
different events, like importance sampling or computing the expectation. If None is returned, it is assumed
the samples are iid monte carlo samples.

This method is called from storch.method.Method.sample, and it is not needed to manually call this on
created plates

storch.sampling.seq.expand_with_ignore_as(tensor, expand_as, ignore_dim: Union[str, int])→ Tensor
Expands the tensor like expand_as, but ignores a single dimension. Ie, if tensor is of size a x b, expand_as of size
d x a x c and dim=-1, then the return will be of size d x a x b. It also automatically expands all plate dimensions
correctly. :param ignore_dim: Can be a string referring to the plate dimension

storch.sampling.seq.left_expand_as(tensor, expand_as)

storch.sampling.seq.right_expand_as(tensor, expand_as)
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9.3 Sampling without replacement

class storch.sampling.swor.SampleWithoutReplacement(plate_name: str, k: int, biased_iw: bool = False,
eos=None)

Bases: IterDecoding

Sampling method for sampling without replacement from (sequences of) discrete distributions. Implements
Stochastic Beam Search https://arxiv.org/abs/1903.06059 with the weighting as defined by REINFORCE without
replacement https://openreview.net/forum?id=r1lgTGL5DE

EPS = 1e-08

compute_iw(plate: AncestralPlate, biased: bool)

create_plate(plate_size: int, plates: [storch.Plate])→ AncestralPlate

decode_step(indices: Tuple[int], yv_log_probs: storch.Tensor, joint_log_probs: Optional[storch.Tensor],
sampled_support_indices: Optional[storch.Tensor], parent_indexing:
Optional[storch.Tensor], is_conditional_sample: bool, amt_plates: int, amt_samples: int)

Decode given the input arguments for a specific event using stochastic beam search. :param indices: Tuple
of integers indexing the current event to sample. :param yv_log_probs: Log probabilities of the different op-
tions for this event. distr_plates x k? x |D_yv| :param joint_log_probs: The log probabilities of the samples
so far. None if not is_conditional_sample. prev_plates x amt_samples :param sampled_support_indices:
Tensor of samples so far. None if this is the first set of indices. plates x k x events :param parent_indexing:
Tensor indexing the parent sample. None if not is_conditional_sample. :param is_conditional_sample:
True if a parent has already been sampled. This means the plates are more complex! :param amt_plates: The
total amount of plates in both the distribution and the previously sampled variables :param amt_samples:
The amount of active samples. :return: 3-tuple of storch.Tensor. 1: sampled_support_indices, with :,
indices referring to the indices for the support. 2: The updated joint_log_probs of the samples. 3: The
updated parent_indexing. How the samples index the parent samples. Can just return parent_indexing if
nothing happens. 4: The amount of active samples after this step.

on_plate_already_present(plate: Plate)

perturbed_log_probs: Optional[storch.Tensor] = None

reset()

select_samples(perturbed_log_probs: storch.Tensor, joint_log_probs: storch.Tensor)
Given the perturbed log probabilities and the joint log probabilities of the new options, select which one
to use for the sample. :param perturbed_log_probs: plates x (k? * |D_yv|). Perturbed log-probabilities.
k is present if first_sample. :param joint_log_probs: plates x (k? * |D_yv|). Joint log probabilities of the
options. k is present if first_sample. :param first_sample: :return: perturbed log probs of chosen samples,
joint log probs of chosen samples, index of chosen samples

set_mc_sample(new_sample_func: Callable[[Distribution, [storch.Tensor], [storch.Plate], int],
torch.Tensor])→ SamplingMethod

Override storch.Method specific sampling functions. This is called when initializing a storch.Method that
has slightly different MC sampling semantics (for example, reparameterization instead of normal sampling).
This allows for compatibility of different storch.Method’s with different storch.sampling.Method’s.

weighting_function(tensor: StochasticTensor, plate: Plate)→ Optional[Tensor]
Weight by the size of the sample. Overload this if your sampling method uses some kind of weighting of the
different events, like importance sampling or computing the expectation. If None is returned, it is assumed
the samples are iid monte carlo samples.
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This method is called from storch.method.Method.sample, and it is not needed to manually call this on
created plates

class storch.sampling.swor.SumAndSample(plate_name: str, sum_size: int, sample_size: int = 1,
without_replacement: bool = False, eos=None)

Bases: SampleWithoutReplacement

Sums over S probable samples according to beam search and K sampled values that are not in the probable
samples, then normalizes them accordingly.

select_samples(perturbed_log_probs: storch.Tensor, joint_log_probs: storch.Tensor)
Given the perturbed log probabilities and the joint log probabilities of the new options, select which one
to use for the sample. :param perturbed_log_probs: plates x (k? * |D_yv|). Perturbed log-probabilities.
k is present if first_sample. :param joint_log_probs: plates x (k? * |D_yv|). Joint log probabilities of the
options. k is present if first_sample. :param first_sample: :return: perturbed log probs of chosen samples,
joint log probs of chosen samples, index of chosen samples

training: bool

storch.sampling.swor.cond_gumbel_sample(all_joint_log_probs, perturbed_log_probs)→ Tensor

storch.sampling.swor.log1mexp(a: Tensor)→ Tensor
See appendix A of http://jmlr.org/papers/v21/19-985.html. Numerically stable implementation of log(1-exp(a))

9.4 Unordered set sampling

class storch.sampling.unordered_set.GumbelSoftmaxWOR(plate_name: str, k: int,
initial_temperature=1.0,
min_temperature=0.0001,
annealing_rate=1e-05, eos=None)

Bases: UnorderedSet

sample(distr: ~torch.distributions.distribution.Distribution, parents: [<class 'storch.tensor.Tensor'>],
orig_distr_plates: [<class 'storch.tensor.Plate'>], requires_grad: bool) -> (<class 'torch.Tensor'>,
<class 'storch.tensor.Plate'>)

Sample from the distribution given the sequence so far. :param distribution: The distribution to sample
from :return:

training: bool

class storch.sampling.unordered_set.UnorderedSet(plate_name: str, k: int, comp_leave_two_out: bool =
False, exact_integration: bool = False,
num_int_points: int = 1000, a: float = 5.0,
eos=None)

Bases: SampleWithoutReplacement

training: bool

weighting_function(tensor: StochasticTensor, plate: Plate)→ Optional[Tensor]
Weight by the size of the sample. Overload this if your sampling method uses some kind of weighting of the
different events, like importance sampling or computing the expectation. If None is returned, it is assumed
the samples are iid monte carlo samples.

This method is called from storch.method.Method.sample, and it is not needed to manually call this on
created plates
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CHAPTER

TEN

STORCH PACKAGE

10.1 Inference

10.2 Wrappers

storch.wrappers.deterministic(fn: Optional[Callable] = None, **kwargs)
Wraps the input function around a deterministic storch wrapper. This wrapper unwraps Tensor objects to Tensor
objects, aligning the tensors according to the plates, then runs fn on the unwrapped Tensors.

Parameters
• fn – Optional function to wrap. If None, this returns another wrapper that accepts a function

that will be instantiated

• kwargs. (by the given) –

• unwrap – Set to False to prevent unwrapping Tensor objects.

• fn_args – List of non-keyword arguments to the wrapped function

• fn_kwargs – Dictionary of keyword arguments to the wrapped function

• unwrap – Whether to unwrap the arguments to their torch.Tensor counterpart (default: True)

• align_tensors – Whether to automatically align the input arguments (default: True)

• l_broadcast – Whether to automatically left-broadcast (default: True)

• expand_plates – Instead of adding singleton dimensions on non-existent plates, this will

• (default (Note that outputs are unflattened automatically.) – False) flat-
ten_plates sets this to True automatically.

• flatten_plates – Flattens the plate dimensions into a single batch dimension if set to true.

• dimension. (This can be useful for functions that are written to only
work for tensors with a single batch ) –

• (default – False)

• dim – Replaces the dim input in fn_kwargs by the plate dimension corresponding to the given
string (optional)

• dims – Replaces the dims input in fn_kwargs by the plate dimensions corresponding to the
given strings (optional)

• self_wrapper – storch.Tensor that wraps a
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Returns
The wrapped function fn.

Return type
Callable

storch.wrappers.ignore_wrapping()

storch.wrappers.is_iterable(a: Any)

storch.wrappers.make_left_broadcastable(fn: Optional[Callable])
Deterministic wrapper that is compatible with functions that are not by themselves left-broadcastable, such as
torch.nn.Conv2d(). This function is on (N, C, H, W) and cannot deal with additional ‘independent’ dimen-
sions on the left. To fix this, use make_left_broadcastable(Conv2d(16, 33, 3))

storch.wrappers.reduce(fn, plates: Union[str, List[str]])
Wraps the input function around a deterministic storch wrapper. This wrapper unwraps Tensor objects to Tensor
objects, aligning the tensors according to the plates, then runs fn on the unwrapped Tensors. It will reduce the
plates given by plates.

Parameters
fn (Callable) – Function to wrap.

Returns
The wrapped function fn.

Return type
Callable

storch.wrappers.stochastic(fn)
Applies fn to the inputs. fn should return one or multiple storch.Tensor`s. `fn should not call storch.stochastic or
storch.deterministic. inputs can include `storch.Tensor`s.

Parameters
fn –

Returns

10.3 Exceptions

exception storch.exceptions.IllegalStorchExposeError(message)
Bases: Exception

10.4 Unique

This module is highly experimental
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10.5 Utilities

storch.storch.cat(*args, **kwargs)
Version of torch.cat() that is compatible with storch.Tensor. Required because torch.Tensor.
__torch_function__() is not properly implemented for torch.cat(): https://github.com/pytorch/pytorch/
issues/34294

storch.storch.conditional_gumbel_rsample(hard_sample: Tensor, probs: Tensor, bernoulli: bool,
temperature)→ Tensor

Conditionally re-samples from the distribution given the hard sample. This samples z sim p(z|b), where b is the
hard sample and p(z) is a gumbel distribution.

storch.storch.expand_as(tensor: Union[Tensor, Tensor], expand_as: Union[Tensor, Tensor])→ Union[Tensor,
Tensor]

storch.storch.gather(input: Tensor, dim: str, index: Tensor)

storch.storch.grad(outputs, inputs, grad_outputs=None, retain_graph: Optional[bool] = None, create_graph:
bool = False, only_inputs: bool = True, allow_unused: bool = False)→ Tuple[Tensor, ...]

Helper method for computing torch.autograd.grad on storch tensors. Returns storch Tensors as well.

storch.storch.logsumexp(tensor: Tensor, dims: Union[List[Union[str, int, Plate]], str, int, Plate])→ Tensor

storch.storch.mean(tensor: Tensor, dims: Union[List[Union[str, int, Plate]], str, int, Plate])→ Tensor
Simply takes the mean of the tensor over the dimensions given. WARNING: This does NOT weight the different
elements according to the plates. You will very likely want to call the reduce_plates method instead.

storch.storch.order_plates(plates: [<class 'storch.tensor.Plate'>], reverse=False)
Topologically order the given plates. Uses Kahn’s algorithm.

storch.storch.reduce_plates(tensor: Union[Tensor, Tensor], plates: Optional[Union[List[Union[Plate, str]],
Plate, str]] = None, detach_weights=True)→ Tensor

Reduce the tensor along the given plates. This takes into account how different samples are weighted, and should
nearly always be used instead of reducing plate dimensions using the mean or the sum. By default, this reduces
all plates.

Parameters
• tensor – Tensor to reduce

• plates – Plates to reduce. If None, this reduces all plates (default). Can be a string, Plate,
or list of string

• Plates. (and) –

• detach_weights – Whether to detach the weighting of the samples from the graph

Returns
The reduced tensor

storch.storch.sum(tensor: Tensor, dims: Union[List[Union[str, int, Plate]], str, int, Plate])→ Tensor
Simply sums the tensor over the dimensions given. WARNING: This does NOT weight the different elements
according to the plates. You will very likely want to call the reduce_plates method instead.

storch.storch.variance(tensor: Union[Tensor, Tensor], variance_plate: Union[Plate, str], plates:
Optional[Union[List[Union[Plate, str]], Plate, str]] = None, detach_weights=True)
→ Tensor

Compute the variance of the tensor along the plate dimensions. This takes into account how different samples
are weighted.
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Parameters
• tensor – Tensor to compute variance over

• plates – Plates to reduce.

• detach_weights – Whether to detach the weighting of the samples from the graph

Returns
The variance of the tensor.

storch.util.get_distr_parameters(d: Distribution, filter_requires_grad=True)→ Dict[str, Tensor]

storch.util.has_backwards_path(output: ~storch.tensor.Tensor, inputs: [<class 'storch.tensor.Tensor'>])→
[<class 'bool'>]

Returns true for each individual input if the gradient functions of the torch.Tensor underlying output is connected
to the input tensor. This is only run once to compute the possibility of links between two storch.Tensor’s. The re-
sult is saved into the parent links on storch.Tensor’s. :param output: :param input: :param depth_first: Initialized
to False as we are usually doing this only for small distances between tensors. :return:

storch.util.has_differentiable_path(output: Tensor, input: Tensor)

storch.util.magic_box(l: Tensor)
Implements the MagicBox operator from DiCE: The Infinitely Differentiable Monte-Carlo Estimator https://
arxiv.org/abs/1802.05098 It returns 1 in the forward pass, but returns magic_box(l) cdot r in the backwards pass.
This allows for any-order gradient estimation.

storch.util.print_graph(costs: [<class 'storch.tensor.CostTensor'>])

storch.util.reduce_mean(tensor: ~torch.Tensor, keep_dims: [<class 'int'>])

storch.util.rsample_gumbel(distr: Distribution, n: int)→ Tensor

storch.util.rsample_gumbel_softmax(distr: Distribution, n: int, temperature: Tensor, straight_through: bool
= False)→ Tensor

storch.util.split(tensor: Tensor, plate: Plate, *, amt_slices: Optional[int] = None, slices:
Optional[List[slice]] = None, create_plates=True)→ Tuple[Tensor, ...]

Splits the plate dimension on the tensor into several tensors and returns those tensors. Note: It removes the
tensors from the computation graph and therefore should only be used when creating estimators, when logging
or debugging, or if you know what you’re doing.

storch.util.tensor_stats(tensor: Tensor)

storch.util.topological_sort(costs: [<class 'storch.tensor.CostTensor'>])→ [<class 'storch.tensor.Tensor'>]
Implements reverse kahn’s algorithm :param costs: :return:

storch.util.walk_backward_graph(tensor: Tensor)→ Iterable[Tensor]
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method), 40
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get_sampled_seq() (storch.sampling.seq.SequenceDecoding

method), 40
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method), 40
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M
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storch.wrappers), 44
mc_sample() (storch.sampling.method.SamplingMethod

method), 37
mc_weighting_function()

(storch.sampling.method.SamplingMethod
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P
perturbed_log_probs
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reduce() (in module storch.wrappers), 44
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method), 40
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module, 38
storch.sampling.swor

module, 41
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module, 42
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module, 45
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module, 46
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module, 43
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tensor_stats() (in module storch.util), 46
topological_sort() (in module storch.util), 46
training (storch.method.baseline.Baseline attribute), 35
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